
CSC 108H: Introduction to Computer
Programming

Summer 2011

Marek Janicki

July 28 2011

Administration

● Assignment updates.

● Codelab updates.

July 28 2011

Algorithms.

● So far we've looked at common components of
programming languages.

● And we've seen very locally how to think about
using them.

● We haven't talked a whole lot about how to
approach bigger problems.

● We've mentioned testing as a way to get correct
programs.
● Haven't mentioned analysing the problem.

July 28 2011

Sorting.

● We're going to using sorting as a case study.
● This is a core and thus very well-studied

problem in the literature.
● But it's also simple to explain.
● We will be covering basic methods for sorting.
● Our methods will be inferior to pythons
list.sort() method.

July 28 2011

Pseudocode.

● At this point we're familiar with the basic tools of
programming.

● This means we can use simple abstractions
and reliably go to and from code with them.

● So when we're designing algorithms we tend to
do so using cognitive shortcuts and
simplifications.

● This rough code is called Pseudocode.

July 28 2011

Pseudocode.

● Python code:
for i in range(len(my_list)):

 if my_list[i]%2 == 0 :

 my_list[i] = my_list[i]+1

● Pseudocode:

for every element e in my_list

 add 1 to the even-indexed elements.

● Note that pseudocode does use indenting to
indicate loops and seperate bits of code.

July 28 2011

Sorting - Problem Definition.

● We assume that we're given a list with n elements.

● Using n to denote input size is standard.
● We assume that we want the list sorted in non-

decreasing order.

● non-decreasing to handle case of duplicate
elements.

● We assume we can only do pair-wise comparisons.

● This means our methods will be robust enough to
handle any class that implements __cmp__

July 28 2011

Sorting - Stopping Criterion.

● If we're sorting a list, how do we know when
we're done and the list is sorted?

● One way is to check every adjacent pair of
elements.

● If (in our case) the larger indexed element is at
least as large as the smaller indexed element
for every pair, the list is sorted.
● Why?
● Can we use this to get an algorithm?

July 28 2011

Towards a sorting algorithm.

● We know that if we compare all the adjacent
elements and there are no inversions then
we're done.
● An inversion is when a pair of elements are

swapped.

● So what if we try and force this to be true by
going through the array and swapping any
adjacent inversions that we see.

July 28 2011

Towards a sorting algorithm.

● That is:

for every index i but the last in my_lst

 if my_lst[i]>my_lst[i+1]

 swap my_lst[i] and my_lst[i+1]
● What happens after one pass?
● Do we need to do more than one?

July 28 2011

Bubblesort.

bubblesort(my_lst)

 for i = 0 to n-1

 bubble(my_lst, i)

bubble(my_lst,i)

 for j = 0 to n-i-1

 if my_lst[j]>my_lst[j+1]

 swap my_lst[j] and my_lst[j+1]

July 28 2011

Correctness.

● So now we have a sorting algorithm, but how
do we know it's true?

● A useful tool for analysing loops is a loop
invariant.

● A loop invariant is a statement that is true at
every point in the loop.
● So it depends on the loop index.

● They have both informative and imperative
functions.

July 28 2011

Loop invariant examples.

for j = 0 to n-i-1

 if my_lst[j]>my_lst[j+1]

 swap my_lst[j] and my_lst[j+1]
● Here we see that the jth element is always the

biggest that we've seen. So a loop invariant
would be:
● my_lst[j] is the largest element in my_lst[0:j]

– This tells us a truth at the beginning of any iteration.
– It also tells us what we need to do in any iteration.

July 28 2011

Loop Invariant Examples.

bubblesort(my_lst)

 for i = 0 to n-1

 bubble(my_lst, i)
● Here the loop invariant might be:

● The last i positions of my_lst are sorted in non-
decreasing order and contain the i largest elements
in my_lst.

July 28 2011

Break, the first.

July 28 2011

Improving Bubblesort.

bubblesort(my_lst)

 for i = 0 to n-1

 bubble the 0th element up to i.
● Bubbling elements up is a lot of work. We might

potentially have to touch a lot of the list
elements and do lots of swaps.

● Can we decrease the number of swaps?

July 28 2011

Decreasing the number of swaps.

● Well, if we look at our loop invariant, that might
give us a clue:
● The last i positions of my_lst are sorted in non-

decreasing order and contain the i largest elements
in my_lst.

● Is there a way we can do with without bubbling
elements up?

● So as to minimise swaps?

July 28 2011

Selection sort.

select(my_lst, i)

max = 0

for j = 0 to n-i-1

 if my_lst[j]>my_lst[max] then max = j

swap my_lst[max] and my_lst[n-i-1]

● What's our loop invariant?

July 28 2011

Selection sort.

select(my_lst, i)

max = 0

for j = 0 to n-i-1

 if my_lst[j]>my_lst[max] then max = j

swap my_lst[max] and my_lst[n-i-1]

● max contains the index of the biggest value in
my_lst[0:j]

July 28 2011

Selection sort.

selectionsort(my_lst)

 for i = 0 to n-1

 select(my_lst, i)

select(my_lst, i)

max = 0

for j = 0 to n-i-1

 if my_lst[j]>my_lst[max] then max = j

swap my_lst[max] and my_lst[n-i-1]

July 28 2011

One last sort.

● Called shell sort or insertion sort.
● This one is effectively how we sort cards when

we're dealt them in a card game.
● We're going to use the same general structure:

for every element in list

call some function.

some function

loop through some part of list and do something.

July 28 2011

Insertion sort.

for every element in list

call some function.

some function

loop through some part of list and do something.

● Note, the above is not structured enough to be
pseudocode.

● It's closer to gibberish than anything else.
● Can we fix it?

July 28 2011

Insertion sort.

● If it were cards we'd have something like:

for each card you pickup

 do something.
● Can we think of a loop invariant for the for loop?
● Or structure for the something part?

July 28 2011

Insertion sort.

insertionsort(my_lst)

 for i = 1 to n-1

 insert(my_list, i)

insert(my_lst, i)

for j = i-1 to 0

 if my_lst[j]>my_lst[j+1]

 swap my_lst[j] and my_lst[j+1]

 else return

July 28 2011

Loop invariants.

● main loop: The first i elements are already
sorted.

● Insert Loop: my_lst[0:i] is already sorted, except
possibly for the element at position j+1.

July 28 2011

Summary

● We introduce the idea of abstraction (through
pseudocode) and algorithmic thinking.

● It is alot easier to catch conceptual errors in the
algorithmic stage than in the testing stage.
● Loop invariants are a useful tool for thinking about

algorithms.

● It is much easier to catch index errors and
corner case errors while testing.

● Suggests sort of a division of labour.

July 28 2011

Summary

● We covered three types of sorting.
● Bubble, Selection and Insertion.

● There are better sorting methods out there.
● They generally rely on recursion which we're not

covering. (Merge, Heap, Quick).
– This is covered in later courses.

● Python uses an adaptive form of merge sort.
– Adaptive because for small numbers it uses insertion

sort.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

