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Administration

● Assignment updates.

● Codelab updates.
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Algorithms.

● So far we've looked at common components of 
programming languages.

● And we've seen very locally how to think about 
using them.

● We haven't talked a whole lot about how to 
approach bigger problems.

● We've mentioned testing as a way to get correct 
programs.
● Haven't mentioned analysing the problem.



July 28 2011

Sorting.

● We're going to using sorting as a case study.
● This is a core and thus very well-studied 

problem in the literature.
● But it's also simple to explain.
● We will be covering basic methods for sorting.
● Our methods will be inferior to pythons 
list.sort() method.
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Pseudocode.

● At this point we're familiar with the basic tools of 
programming.

● This means we can use simple abstractions 
and reliably go to and from code with them.

● So when we're designing algorithms we tend to 
do so using cognitive shortcuts and 
simplifications.

● This rough code is called Pseudocode.



July 28 2011

Pseudocode.

● Python code:
for i in range(len(my_list)):

    if my_list[i]%2 == 0 :

        my_list[i] = my_list[i]+1

● Pseudocode:

for every element e in my_list

    add 1 to the even-indexed elements.

● Note that pseudocode does use indenting to 
indicate loops and seperate bits of code.
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Sorting - Problem Definition.

● We assume that we're given a list with n elements.

● Using n to denote input size is standard.
● We assume that we want the list sorted in non-

decreasing order.

● non-decreasing to handle case of duplicate 
elements.

● We assume we can only do pair-wise comparisons.

● This means our methods will be robust enough to 
handle any class that implements __cmp__
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Sorting - Stopping Criterion.

● If we're sorting a list, how do we know when 
we're done and the list is sorted?

● One way is to check every adjacent pair of 
elements.

● If (in our case) the larger indexed element is at 
least as large as the smaller indexed element 
for every pair, the list is sorted.
● Why?
● Can we use this to get an algorithm?
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Towards a sorting algorithm.

● We know that if we compare all the adjacent 
elements and there are no inversions then 
we're done.
● An inversion is when a pair of elements are 

swapped.

● So what if we try and force this to be true by 
going through the array and swapping any 
adjacent inversions that we see.
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Towards a sorting algorithm.

● That is:

for every index i but the last in my_lst

    if my_lst[i]>my_lst[i+1] 

         swap my_lst[i] and my_lst[i+1]
● What happens after one pass?
● Do we need to do more than one?
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Bubblesort.

bubblesort(my_lst)

    for i = 0 to n-1

        bubble(my_lst, i)

bubble(my_lst,i)

    for j = 0 to n-i-1

        if my_lst[j]>my_lst[j+1] 

              swap my_lst[j] and my_lst[j+1]
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Correctness.

● So now we have a sorting algorithm, but how 
do we know it's true?

● A useful tool for analysing loops is a loop 
invariant.

● A loop invariant is a statement that is true at 
every point in the loop.
● So it depends on the loop index.

● They have both informative and imperative 
functions.
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Loop invariant examples.

for j = 0 to n-i-1

        if my_lst[j]>my_lst[j+1] 

              swap my_lst[j] and my_lst[j+1]
● Here we see that the jth element is always the 

biggest that we've seen. So a loop invariant 
would be:
● my_lst[j] is the largest element in my_lst[0:j]

– This tells us a truth at the beginning of any iteration.
– It also tells us what we need to do in any iteration.
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Loop Invariant Examples.

bubblesort(my_lst)

    for i = 0 to n-1

        bubble(my_lst, i)
● Here the loop invariant might be:

● The last i positions of my_lst are sorted in non-
decreasing order and contain the i largest elements 
in my_lst.
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Break, the first.
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Improving Bubblesort.

bubblesort(my_lst)

    for i = 0 to n-1

       bubble the 0th element up to i. 
● Bubbling elements up is a lot of work. We might 

potentially have to touch a lot of the list 
elements and do lots of swaps.

● Can we decrease the number of swaps?       
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Decreasing the number of swaps.

● Well, if we look at our loop invariant, that might 
give us a clue:
● The last i positions of my_lst are sorted in non-

decreasing order and contain the i largest elements 
in my_lst.

● Is there a way we can do with without bubbling 
elements up?

● So as to minimise swaps?
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Selection sort.

select(my_lst, i)

max = 0

for j = 0 to n-i-1

    if my_lst[j]>my_lst[max] then max = j

swap my_lst[max] and my_lst[n-i-1]

● What's our loop invariant?
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Selection sort.

select(my_lst, i)

max = 0

for j = 0 to n-i-1

    if my_lst[j]>my_lst[max] then max = j

swap my_lst[max] and my_lst[n-i-1]

● max contains the index of the biggest value in 
my_lst[0:j]
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Selection sort.

selectionsort(my_lst)

    for i = 0 to n-1

       select(my_lst, i)

select(my_lst, i)

max = 0

for j = 0 to n-i-1

    if my_lst[j]>my_lst[max] then max = j

swap my_lst[max] and my_lst[n-i-1]
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One last sort.

● Called shell sort or insertion sort.
● This one is effectively how we sort cards when 

we're dealt them in a card game.
● We're going to use the same general structure:

for every element in list

call some function.

some function

loop through some part of list and do something.
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Insertion sort.

for every element in list

call some function.

some function

loop through some part of list and do something.

● Note, the above is not structured enough to be 
pseudocode.

● It's closer to gibberish than anything else.
● Can we fix it?
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Insertion sort.

● If it were cards we'd have something like:

for each card you pickup

     do something.
● Can we think of a loop invariant for the for loop?
● Or structure for the something part?
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Insertion sort.

insertionsort(my_lst)

    for i = 1 to n-1

       insert(my_list, i)

insert(my_lst, i)

for j = i-1 to 0

    if my_lst[j]>my_lst[j+1]

         swap my_lst[j] and my_lst[j+1]

    else return
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Loop invariants.

● main loop: The first i elements are already 
sorted.

● Insert Loop: my_lst[0:i] is already sorted, except 
possibly for the element at position j+1.
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Summary

● We introduce the idea of abstraction (through 
pseudocode) and algorithmic thinking.

● It is alot easier to catch conceptual errors in the 
algorithmic stage than in the testing stage.
● Loop invariants are a useful tool for thinking about 

algorithms.

● It is much easier to catch index errors and 
corner case errors while testing.

● Suggests sort of a division of labour.
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Summary

● We covered three types of sorting.
● Bubble, Selection and Insertion.

● There are better sorting methods out there.
● They generally rely on recursion which we're not 

covering. (Merge, Heap, Quick).
– This is covered in later courses.

● Python uses an adaptive form of merge sort.
– Adaptive because for small numbers it uses insertion 

sort.
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